
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 1857–1867 PII: S0953-4075(03)58918-0

Highly accurate evaluation of the few-body auxiliary
functions and four-body integrals

Alexei M Frolov1 and David H Bailey2

1 Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
2 Lawrence Berkeley National Laboratory, Mail Stop 50B-2239, Berkeley, CA 94720, USA

Received 10 January 2003, in final form 25 March 2003
Published 16 April 2003
Online at stacks.iop.org/JPhysB/36/1857

Abstract
Analytical formulae suitable for numerical calculations of the second-
and third-order auxiliary functions A2(k, m, a, b) and A3(k, �, m, a, b, c)
are presented. These formulae can directly be used in highly accurate
calculations of the A2(k, m, a, b) and A3(k, �, m, a, b, c) functions. In turn,
the highly accurate auxiliary functions of the second and third order are
used to compute various four-body integrals, fourth-order auxiliary functions
A4(k, �, m, n, a, b, c, d) and so-called general four-body integrals. The
A2(k, m, a, b) and A3(k, �, m, a, b, c) functions can be used to solve a large
number of four-, five- and many-body problems from atomic, nuclear and
molecular physics.

1. Introduction

In this communication we discuss the problem of highly accurate computations of the few-body
auxiliary functions which play a very important role in many few-body problems of atomic,
molecular and nuclear physics. Originally, the few-body auxiliary functions were introduced
to solve the atomic four-body problems by James and Coolidge [1]. In fact, the computation
of the bound states in various few-electron atomic systems is reduced to the calculation of
these auxiliary functions. The explicit forms of such functions of the lowest orders are (see
e.g. [2–4] and references therein)

A1(k, a) ≡ A(k, a) =
∫ +∞

0
xk exp(−ax) dx = k!

ak+1
(1)

A2(k, m, a, b) ≡ V (k, m, a, b) =
∫ +∞

0
xk exp(−ax) dx

∫ +∞

x
ym exp(−by) dy (2)

A3(k, �, m, a, b, c) ≡ W (k, �, m, a, b, c)

=
∫ +∞

0
xk exp(−ax) dx

∫ +∞

x
y� exp(−by) dy

∫ +∞

y
zm exp(−cz) dz (3)
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where all values k, �, m are integers. The first integer parameter k is always non-negative,
while m (in the A2 and A3 functions) can be positive, equal to zero or negative. The three
parameters a, b, c are real positive numbers. The three auxiliary functions A1, A2 and A3

are sufficient to solve a number of actual four-body problems. For five-, six- and many-body
problems one has to use the auxiliary functions An with index n greater than 3. The auxiliary
functions with index greater than 3 can be determined in an analogous manner (see e.g. [5] and
below). Note that in this study the auxiliary functions of the order n (where n = 1, 2, 3, . . .)
are designated by the notation An. In the literature, (see e.g. [1–3]), the notation A, V and W
stands for the auxiliary functions of the first, second and third orders, i.e. for the A1, A2 and
A3 functions.

Presently, we restrict ourselves to the case of four-body systems, i.e. to the three auxiliary
functions A1, A2, A3 of the lowest orders. Our first goal is to derive some simple and
numerically stable formulae and recurrence relations for these functions which can be directly
used in numerical calculations. Note that the first recurrence relations for the A2(k, m, a, b)

and A3(k, �, m, a, b, c) functions were produced by James and Coolidge [1]. However, later [2]
(see also [3]) it was shown that such recurrence relations are not numerically stable for negative
m. In this study we develop an approach which allows one to compute the A2(k, m, a, b) and
A3(k, �, m, a, b, c) auxiliary functions for arbitrary values of their arguments to very high (in
principle, unlimited) numerical accuracy. All our formulae are tested in actual computations.
Moreover, by using the formulae derived by Perkins [6] we also computed highly accurate
numerical values for a number of actual four-body integrals. In section 4 we discuss some new
applications for the A2(k, m, a, b) and A3(k, �, m, a, b, c) auxiliary functions.

2. Computational formulae for the second- and third-order auxiliary functions

Let us present the formulae for the second- and third-order auxiliary functions A2(k, m, a, b)

and A3(k, �, m, a, b, c). In general, the second-order auxiliary functions A2(k, m, a, b) are
needed in actual four-body calculations for k � 0 and k+m � −1. For the third-order auxiliary
functions A3(k, �, m, a, b, c) the three inequalities k � 0, � � 0 and k + � + m � −1 must
be obeyed [6]. To present the analytical formulae for the second- and third-order auxiliary
functions A2(k, m, a, b) and A3(k, �, m, a, b, c) it is convenient to consider the three following
cases. In the first case the parameter m is positive in both the functions A2(k, m, a, b) and
A3(k, �, m, a, b, c). In the second case m = 0, while in the third case the parameter m is
negative, i.e. m < 0. The formulae for the A2(k, m, a, b) and A3(k, �, m, a, b, c) functions
are different in each of these cases.

In the first case, i.e. for positive m, we can write [4]

A2(k, m, a, b) =
m∑

m1=0

Cm1
m A1(m1, b)A1(k + m − m1, a + b), (4)

where A1(m, c) = m!
cm+1 is as defined in equation (1), and Cm

n are the binomial coefficients, i.e.

Cm
n = n!

m!(n − m)!

where 0! = 1, C0
0 = 1 and Cm

m = 1. Analogously, for the A3(k, �, m, a, b, c) function one
finds

A3(k, �, m, a, b, c) =
m∑

m′=0

Cm′
m A1(c, m ′)A2(k, � + m − m ′, a + b + c, b + c). (5)

These formulae can be used in computations of the second- and third-order auxiliary functions
A2(k, m, a, b) and A3(k, �, m, a, b, c) in the case of positive values of m.
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In fact, very similar relations can be found for the few-body auxiliary wavefunctions of
arbitrary order n. For instance, for the five-body auxiliary function A4(k, �, m, n, a, b, c, d)

one finds the following formula:

A4(k, �, m, n, a, b, c, d) =
n∑

n1=0

Cn1
n A1(n1, d)

× A3(k, �, m + n − n1, a + b + c + d, b + c + d, c + d), (6)

where n is non-negative. This formula can be directly used in computations of the five-body
auxiliary functions in the cases when all integer parameters are non-negative. The five-body
auxiliary functions are of paramount importance in the bound-state and scattering calculations
of various five-body systems, e.g. the beryllium atom and beryllium-like ions.

In the second case, when m = 0, we have [4]

A2(k, 0, a, b) = 1

b

k!

(a + b)k+1
= A1(k, a + b)

b
, (7)

where k is an arbitrary (non-negative) integer. In the case when k = 0, m = −1, the expression
for the A2(k, m, a, b) function takes the form

A2(0,−1, a, b) = 1

a
ln

(
a + b

b

)
. (8)

Analogously, for the A3(k, �, m = 0, a, b, c) auxiliary function one finds

A3(k, �, 0, a, b, c) = A2(a, b + c; k, �)

c
. (9)

By using equation (3) one can simplify this expression even further, since k and � are non-
negative in this case. If � + m = 0, then the appropriate expression for the A3(k, �, m, a, b, c)
function takes the form

A3(k, �, m, a, b, c) = A1(a + b + c; k)

(b + c)c
. (10)

The third case, when m < 0, is of great interest in applications. In this case we can
write [4]

A2(k, m, a, b) = A1(k + m + 1, a + b)

k + 1
2 F1

(
1, k + m + 2; k + 2; a

a + b

)
,

where 2 F1(α, β; γ ; z) is the Gaussian hypergeometric function

2 F1(α, β; γ ; z) = 1 +
∑
n=1

(α)n(β)n

(γ )nn!
zn (11)

and (α)0 = 1, (α)1 = α, . . . , (α)n = α(α + 1) · · · (α + n − 1) = �(α+n)

�(α)
, where �(x) is the

usual gamma function and n is always a positive integer; (1)n = n! in this notation. In fact, in
the present case we always have 0 < z < 1 and k + m + 2 < k + 2.

The analogous expression for the A3 auxiliary function takes the form [4]

A3(k, �, m, α, β, γ ) = A1(k + � + m + 2, α + β + γ )
∑
n=0

(k + � + m + 3)n

(k + 1)n+1

×
(

α

α + β + γ

)n

Dm
k+�+n+3

(
α + β

α + β + γ

)
(12)

where the coefficients Dm
K (y) are
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Dm
K (y) = 2 F1(1, K + m; K ; y)

K − 1
(13)

where m < 0, K � 2, K + m � 0, K + m < K and 0 � y < 1 always. Note that all
formulae for the A2 and A3 auxiliary functions contain only the hypergeometric functions
of special kind, i.e. the 2 F1(1, a; c; z) functions, where also a < c and z < 1. This
simplifies drastically the numerical calculations of such functions. Furthermore, by using
equation (12) in actual computations of the A3(k, �, m, α, β, γ ) functions one needs to compute
only the first hypergeometric function 2 F1(1, a; c; z). All other hypergeometric functions
2 F1(1, a + n; c + n; z) needed in equation (12) can easily be obtained from 2 F1(1, a; c; z) by
using the following relation for hypergeometric functions (see e.g. [7, 8]):

2 F1(1, a, c; z) = 1 +

(
a

c

)
z 2 F1(1, a + 1; c + 1; z). (14)

In fact, this relation follows directly from the definition of the 2 F1(1, a; c; z) hypergeometric
function, equation (11). In the present case, we also have a < c.

All presented formulae for the A2(k, m, a, b) and A3(k, �, m, a, b, c) auxiliary functions
have been extensively tested in numerical computations. The numerical results of such
computational tests can be found in tables 1 and 2. Table 1 contains the numerical values of
the auxiliary functions A2(k, m, a, b) and A3(k, �, m, a, b, c) determined for different values
of the variables. Note that all our present calculations are performed using high-precision
arithmetic [9, 10]. The arithmetic accuracy is equivalent to 116–320 decimal digits. In
particular, to compute the A2(k, m, a, b) and A3(k, �, m, a, b, c) functions presented in table 1
we used multi-precision variables with 280–320 decimal digits. However, due to the presence
of a few infinite series the overall accuracy of our computations can be evaluated as ≈144
decimal digits. In fact, such an accuracy can easily be increased to ≈1000 decimal digits for
each computed auxiliary function. The original versions of tables 1–3 included 116 decimal
digits. These tables can be obtained from the authors. However, the versions presented here
contain only 65, 52 and 70 decimal digits, respectively, for each computed function (or integral).
Note also that in our previous studies we successfully used the extended arithmetic accuracy
to solve a number of three-body problems (see e.g. [11] and references therein).

3. Calculation of the four-body integrals

The second- and third-order auxiliary functions A2 and A3 are of paramount importance, since
these functions allow one to compute the so-called four-body integrals [6]

I(K , L, M, n1, n2, n3, α, β, γ ) = 1

(4π)3

∫ ∫ ∫
r K

14r L
24r M

34rn3
12rn2

13rn1
23

× exp(−αr14 − βr24 − γ r34) d3r14 d3r24 d3r34, (15)

where K , L, M, n1, n2, n3 are integer numbers, while α, β, γ are three real (positive) numbers.
In actual computations the r23, r13 and r12 variables are expressed in terms of ‘radial’
coordinates r14, r24, r34 and three Legendre polynomials which depend on the three angular
variables [6]. After the integration over angular variables, one finds the final expression which
is the infinite sum (in some cases, the finite sum) of the auxiliary functions [6]. The explicit
expression for the integral, equation (15), takes the form [6]

I(K , L, M, λ, µ, ν, α, β, γ ) =
∞∑

q=0

1

(2q + 1)2

λa∑
i=0

Pλ,q,i

µa∑
j=0

Pµ,q, j

νa∑
k=0

Pν,q,k

× [A3(K + 2 + 2q + 2 j + 2k, L + 2 + 2i + ν − 2k, M + 2 − 2q + λ − 2i
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+ µ − 2 j ; α, β, γ ) + A3(K + 2 + 2q + 2 j + 2k, M + 2 + 2i

+ µ − 2 j, L + 2 − 2q + λ − 2i + ν − 2k; α, γ, β) + A3(L + 2 + 2q

+ 2i + 2k, K + 2 + 2 j + ν − 2k, M + 2 − 2q + λ − 2i + µ − 2 j ; β, α, γ )

+ A3(L + 2 + 2q + 2i + 2k, M + 2 + λ − 2i + 2 j, K + 2 − 2q + µ − 2 j

+ ν − 2k; β, γ, α) + A3(M + 2 + 2q + 2i + 2 j, K + 2 + µ − 2 j + 2k, L + 2

− 2q + λ − 2i + ν − 2k; γ, α, β) + A3(M + 2 + 2q + 2i + 2 j, L + 2 + λ

− 2i + 2k, K + 2 − 2q + µ − 2 j + ν − 2k; γ, β, α)] (16)

where λa = [ (λ+1)

2 ], µa = [ (µ+1)

2 ], νa = [ (ν+1)

2 ] and [x] denotes the integral part of x . Also, in
this equation Pν,q,k are the so-called Perkins coefficients [6]

Pν,q,k = 2q + 1

ν + 2
C2k+1

ν+2

Nq,ν∏
t=0

(2k + 2t − ν)

(2k + 2q − 2t + 1)
, (17)

where Nq,ν = min((q −1), [ (ν+1)

2 ]) and Cm
n are the binomial coefficients. As follows from this

formula the computation of the four-body integrals is a very complex problem. Indeed, in the
general case, such a four-body integral, equation (16), includes a significant number of terms
(e.g., many thousands of terms). An additional problem is the relatively slow convergence of
the Perkins formula, equation (16), for some four-body integrals. Briefly, the highly accurate
evaluation of the four-body integrals I(K , L, M, n1, n2, n3, α, β, γ ) is a very serious test for
any approach which is proposed for computation of the auxiliary functions A2 and A3 of the
second and third order.

In general, by using this formula one can determine, in principle, an arbitrary four-body
integral. In particular, the values for some of such integrals can be found in table 2. Note
that the numerical values for some integrals presented in table 2 coincide very well with the
corresponding values determined in [2, 4, 12]. However, our table 2 contains significantly
more stable decimal digits for each of these integrals. Originally, we wanted to determine
these integrals with the maximal numerical accuracy. However, there are complications
related to the slow convergence of the Perkins expression equation (16) for some four-body
integrals. Finally, for some integrals in table 2 the total number of stable decimal digits is
significantly less than 116 decimal digits. In general, the number of stable digits has been
determined from a series of computations with different qmax in equation (16). The total
number of terms in equation (16) (qmax) has been increased in each case by 50%. The stable
decimal digits for each of the considered four-body integrals in table 2 have been determined
by comparing the results of such calculations. To illustrate the very slow convergence for
the first integral in table 2, note that the term W (q) with q = 11 500 000 is only ≈1.439
times smaller than the analogous term W (q) with q = 10 500 000. The numerical value
of the term W (q = 10 500 000) is ≈5.078 409 535 × 10−30. This gives us a principal
limit (≈25–27 decimal digits) for the Perkins formula in computations of the first integral
in table 2. In general, such a limit does not depend upon the arithmetic accuracy used in
calculations. Note also that the use of extended numerical precision allows us to perform
a detailed study of the convergence of the computed four-body integrals in many special
cases.

4. Applications of the second- and third-order auxiliary functions

As we mentioned above, the known second- and third-order auxiliary functions are extensively
used to compute the four-body integrals equation (15). In turn, such integrals are used to solve
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Table 1. Auxiliary functions A2(k, �, a, b) and A3(k, �, m, a, b, c) for different values of the parameters. In all
computed functions a = 2.5, b = 1.5 and c = 0.5.

Ai k � m Numerical value

A2 15 −15 — 4.228 083 237 938 250 191 111 722 202 130 691 025 107 170 436 126 187 965 228 482 0594 × 10−3

A3 15 1 −15 7.290 423 272 533 868 050 520 045 492 477 171 882 362 047 505 446 511 566 123 033 3988 × 10−5

A2 25 −25 — 2.523 306 501 378 914 401 482 418 541 875 744 439 720 756 403 103 887 411 743 277 7781 × 10−3

A3 25 1 −25 2.510 183 716 900 327 672 817 691 423 202 591 203 581 174 302 536 339 662 050 197 6426 × 10−3

A2 45 −45 — 1.396 319 599 076 715 073 443 187 582 267 031 763 213 997 166 954 820 721 701 218 4925 × 10−3

A3 45 1 −45 7.513 832 286 771 623 487 662 938 295 645 777 112 840 073 150 955 226 986 952 438 4354 × 10−6

A2 75 −75 — 8.360 500 462 109 605 225 728 901 553 228 727 895 268 311 534 773 478 887 681 782 1626 × 10−4

A3 75 1 −75 2.663 259 162 143 116 509 318 287 937 525 880 454 953 229 745 471 841 454 827 263 7811 × 10−6

A2 95 −95 — 6.595 960 813 759 855 922 192 138 074 389 325 540 702 679 379 139 037 451 630 230 1305 × 10−4

A3 95 1 −95 1.651 750 386 528 926 265 880 302 983 343 666 157 525 513 086 714 135 382 692 955 0458 × 10−6
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Table 2. The basic four-body integral I(K , L , M, n1, n2, n3, α, β, γ ) for different values of the parameters.

n1 n2 n3 K L M α β γ I(K , L , M, n1, n2, n3, α, β, γ )

0 0 0 −1 −1 −1 1.0 1.0 1.0 3.447 454 259 102 525 282 937 825 × 10−1

0 0 0 −1 1 1 5.72 4.26 4.26 6.906 703 593 715 354 492 629 929 163 935 775 938 987 669 903 × 10−6

2 1 1 1 1 1 5.72 4.26 4.26 3.395 169 394 317 930 656 174 909 681 618 605 910 453 514 463 306 301 × 10−6

2 1 1 3 3 3 5.72 5.72 2.80 1.030 576 811 924 965 924 374 053 550 355 904 820 524 037 650 028 308 × 10−3

2 1 1 5 5 5 4.26 4.26 5.72 1.979 899 031 622 284 051 751 347 216 420 991 555 877 686 199 038 181 × 10−1

2 1 1 7 7 7 4.26 4.26 5.72 5.008 185 838 842 137 912 103 637 394 424 245 664 497 660 106 255 086 × 10+2

2 1 1 9 9 9 4.26 4.26 5.72 4.345 217 386 756 292 095 872 515 956 645 580 774 689 638 256 975 456 × 10+6

0 1 1 0 1 1 5.72 4.26 4.26 4.336 035 040 316 289 664 448 861 480 298 613 299 987 706 147 567 394 × 10−6

1 0 2 3 0 −1 2.80 4.26 5.72 1.874 028 781 856 777 749 613 231 112 042 473 707 034 713 052 464 583 × 10−5

2 1 0 1 −1 2 2.80 4.26 5.72 8.442 262 663 550 442 461 583 781 028 684 196 055 178 544 029 642 788 × 10−5

2 0 0 0 0 −1 2.80 5.72 5.72 1.084 350 608 446 545 938 045 123 023 977 286 688 389 421 356 930 173 × 10−5

0 0 2 −1 2 0 5.72 5.72 2.80 7.742 394 164 415 103 633 345 515 703 506 814 058 213 827 820 978 968 × 10−6

0 2 1 −1 2 0 2.80 4.26 5.72 1.687 954 486 696 245 522 170 427 839 101 213 771 666 483 600 681 273 × 10−5

0 0 2 0 0 0 5.72 5.72 2.80 1.592 593 370 562 798 895 675 276 567 151 748 792 138 356 234 953 056 × 10−5
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a number of four-body problems. Note, however, that all applications of equation (15) are
restricted to the one-centre systems, i.e. to the four-body systems in which an infinitely heavy
(i.e. central) particle exists. Such systems include the lithium atom, various lithium-like ions,
positronium hydride HPs (∞H+e−e−e+) and a few other similar systems. In order to consider
the four-body systems with arbitrary masses one needs the general four-body integrals which
are significantly more complicated than integrals defined by equation (15). The general four-
body integral has the form

I4(K , L, M, n1, n2, n3, a12, a13, a23, a14, a24, a34)

= 1

(4π)3

∫ ∫ ∫
r K

14r L
24r M

34 rn3
12rn2

13rn1
23 exp(−a12r12 − a13r13 − a23r23

− a14r14 − a24r24 − a34r34) d3r14 d3r24 d3r34, (18)

where the parameters a12, a13, a23, a14, a24 and a34 are the six real and always positive numbers.
In general, the computation of the four-body integral, equation (18), is a very complex

problem by itself. However, if the three parameters a12, a13 and a23 are relatively small, then
the integral I4 can be reduced to a sum of four-body integrals from equation (15). The explicit
expression takes the form

I4(K , L, M, n1, n2, n3, a12, a13, a23, a14, a24, a34) =
p1∑

N1=0

p2∑
N2=0

p3∑
N3=0

aN1
23

N1!

aN2
13

N2!

aN3
12

N3!

× I(K , L, M, n1 + N1, n2 + N2, n3 + N3, a14, a24, a34) (19)

where I(K , L, M, n1 + N1, n2 + N2, n3 + N3, a14, a24, a34) is the integral from equation (15).
Note that, in general, the sum in the last equation is infinite. However, for relatively small
values of the a12, a13 and a23 parameters (e.g. if each of them <0.1) its approximations
by finite sums converge rapidly. Finally, the formula, equation (19), can be used in actual
computation of various four-body systems with arbitrary masses, e.g., for the positronium
molecule Ps2 and bi-muonic molecule dt µµ [15]. Note that Fromm and Hill [13] (see
also [14]) proposed the direct method which can be used to compute the general four-body
integral I4, equation (19). By using formula (19), we calculated the four-body integral I4

for K = 3, L = 2, M = 1, n1 = 1, n2 = 2, n3 = 0, a12 = 0.1, a13 = 0.085, a23 =
0.097, a14 = 2.5, a24 = 2 and a34 = 1.5. The numerical value of this integral computed with
n1 = n2 = n3 = 10 is ≈1.189 335 704424×102. The analogous result for n1 = n2 = n3 = 11
is 1.189 335 705 494 × 102, while for n1 = n2 = n3 = 12 we have 1.189 335 705 595 × 102.
Thus, formula (19) allows one to determine the approximate numerical value of the considered
four-body integral I4. Currently, we are trying to develop the new, efficient and optimal
approach for highly accurate calculations of the general four-body integrals. The numerical
results for a number of four-body systems will be published elsewhere.

Note also, that our present approach can also be generalized to the case of five-body
systems, e.g. to the beryllium atom and beryllium-like ions. For the five-body systems the
auxiliary functions of the fourth order A4(k, �, m, n, a, b, c, d) play a central role. In a large
number of cases the function A4 can be computed by using the auxiliary functions A2 and A3

defined above. In particular, in table 3 some numerical values of the A4 functions are presented.
These values have been computed for different values of the k, �, m and n parameters. All
computations have been performed with overall arithmetic accuracy ≈144 decimal digits. In
table 3 only 70 digits per result are presented. The computation of the A4(k, �, m, n, a, b, c, d)

functions contains no difficulties. However, in table 3 we restricted to the case when n � 0.
The case of negative n is extremely complex and requires a separate consideration. The
explicit expression for the A4(k, �, m, n, a, b, c, d) function in the case of negative n is
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Table 3. Auxiliary functions A4(k, �, m, n, a, b, c, d) for different values of the integer parametersa .

k � m n Numerical value

5 3 2 1 1.245 110 095 492 153 249 730 734 449 238 268 397 623 474 139 814 680 995 248 324 190 059 658 × 10−6

5 4 3 2 8.445 360 731 572 993 471 694 832 370 457 608 972 635 740 260 570 154 718 196 057 415 365 046 × 10−6

4 5 6 0 1.840 702 649 607 480 594 727 261 356 815 580 326 395 795 691 340 738 791 813 536 857 695 593 × 10−5

4 5 6 1 7.270 131 916 899 149 342 088 849 176 223 471 042 631 264 035 501 300 404 667 326 385 552 796 × 10−5

1 1 1 1 1.354 537 650 128 772 875 247 558 415 286 147 778 561 653 732 713 410 228 731 225 934 772 0763 × 10−4

2 2 2 2 5.855 355 178 392 992 583 927 238 170 166 193 923 772 769 202 869 168 901 945 104 577 994 3715 × 10−5

a The real parameters for the computed A4(k, �, m, n, a, b, c, d) function are a = 2.5, b = 1.5, c = 1.0 and d = 0.5 in all cases.
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A4(k, �, m, n, a, b, c, d) = k!�!

(a + b + c + d)k+�+m+n+4

∞∑
p=0

C�
k+�+1+p

(
a

a + b + c + d

)p

×
∞∑

q=0

(k + � + m + n + 3 + p + q)!

(k + � + 2 + p + q)!

(
a + b

a + b + c + d

)q 1

(k + � + m + 3 + p + q)

× 2 F1

(
1, k + � + m + n + p + q + 4; k + � + m + p + q + 3; a + b + c

a + b + c + d

)
.

(20)

This formula has two small parameters and can be directly used in highly accurate calculations
of various five-body systems. Note, however, that for five-body systems the formula which
represents the expansion of the corresponding five-body integral in terms of the auxiliary
functions A4(k, �, m, n, a, b, c, d) has not been produced yet. Moreover, for five-body systems
one finds an additional and very serious problem which complicates computations of the five-
body integrals: as follows from the Euler theorem, there are 10 interparticle (or relative)
coordinates for an arbitrary five-body system, but only nine of them are truly independent (see,
e.g., discussion in [15]).

5. Conclusion

Thus, in this study we have presented a few relatively simple analytical formulae for the
auxiliary functions of the second and third order A2(k, m, a, b) and A3(k, �, m, a, b, c). The
formulae can directly be used in numerical computations, since they are stable and easy to
program. Moreover, the accuracy of such calculations for the four-body systems can now
be made arbitrarily high. This study essentially marks the final step in the development of
highly accurate procedures for the four-body integral, which are based on the Perkins formula,
equation (16). The developed approach eliminates a number of computational restrictions
which were crucial in earlier studies (see e.g. [2, 4, 12]). Furthermore, it opens a new chapter
in highly accurate computations of four-body systems. We also discuss some new applications
for the auxiliary functions of the second and third orders. In particular, it is shown that
these functions can be used in the computations of five- and many-body systems. Another
application of the auxiliary functions of the second and third orders is related to the calculation
of the general four-body integrals, equation (19).
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